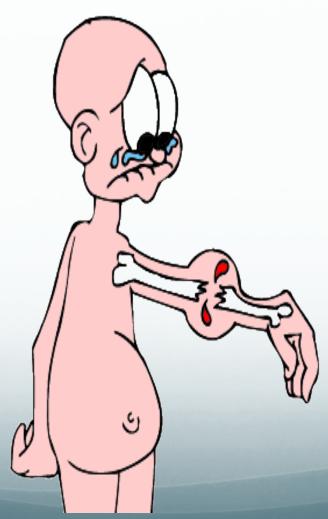


Principles of Fractures


Prof. Mamoun Kremli

Objectives

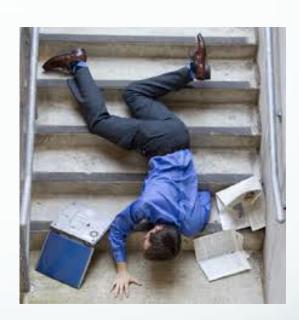
- What is a Fracture the soft tissue part
- Fracture types / classification
- Relation between fracture and force
- History and physical exam. In fractures
- Principles of imaging

What is a fracture?

A fracture is a break in the structural continuity of bone

What is a fracture?

- A fracture is a break in the structural
 Discontinuity of bone
 - Always associated with some soft tissue
 injury
 Fibuol is always lateral
- A fracture is a soft tissue injury in which the underlying bone is broken!


- Mechanism of injury helps expect the
 - Extent and type of bone injury
 - Simple / comminuted / complex
 - Associated fractures/injuries
 - Fall from height on feet
 - fractured calcaneus and lumbar spine
 - Car dashboard injuries
 - fractured patella and hip dislocation
 - Extent of soft tissue injury
 - Suggested treatment and reduction technique
 - Prognosis

• Fall: height, point of impact, twist

- Fall: height, point of impact, twist
- Sport: type, direction of force

- Fall: height, point of impact, twist
- Sport: type, direction of force
- Road traffic accident (RTA):
 - Car (MVA), motorcycle, pedestrian

- Fall: height, point of impact, twist
- Sport: type, direction of force
- Road traffic accident (RTA):
 - Car (MVA), motorcycle, pedestrian
- Heavy object fall:
 - TV, wall, metal, earthquake

- Fall: height, point of impact, twist
- Sport: type, direction of force
- Road traffic accident (RTA):
 - Car (MVA), motorcycle, pedestrian
- Heavy object fall:
 - TV, wall, metal, earthquake
- Assault & firearms / blast

Mechanism of Injury

- Low energy
- High energy

Need to Differentiate

Mechanism of Injury

- Low energy
- High energy

Direction of force

Mechanism of Injury

- Low energy
- High energy

Direction of force

Closed / Open

environment

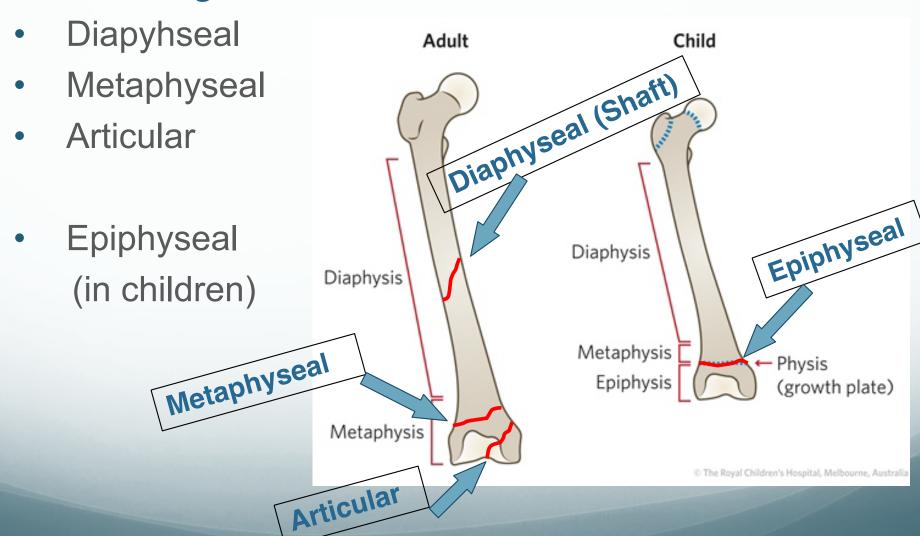
Energy dissipated during injury

Kinetic Energy = $\frac{1}{2}$ MV²

If a Simple fall

= 1

Skiing injury = 3-5


High-velocity gunshot = 20

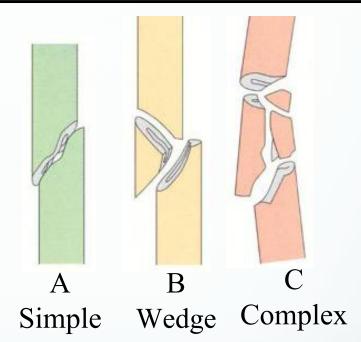
Car bumper (25 km/hr) = 100

According to site of Fracture:

- According to fracture line:
 - Complete (usual)
 - Cortex fractured on both sides

https://orthoinfo.aaos.org

- According to fracture line:
 - Complete (usual)
 - Cortex fractured on both sides
 - Incomplete (in children)
 - Green stick / Torus, Buckle /Deformation

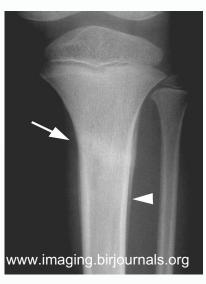

ttps://radiopaedia.org

- According to fracture pattern:
 - Simple
 - Wedge comminuted
 - Complex comminuted
 - Multi-fragmented

- According to fracture pattern:
 - Compressed

http://www.wikiradiography.net

Depressed


- According to type of injury (force):
 - Ordinary fracture
 - Expected from force of injury
 - Stress fracture
 - Repetitive loading
 - Pathological fracture
 - Force too weak to cause fracture
 - Bone is pathologically weak
 - Avulsion fracture
 - Resisted muscle action, or where ligaments and tendons pull a bone fragment off

Stress Fractures

- Bone reacts to repeated loading, may become fatigued & a crack develops
- Fatigue fractures
 - Abnormal stress or torque on a bone that has normal elastic resistance
 - Examples:
 - military recruits, athletes, ballet dancers
- Insufficiency fractures
 - Normal muscular activity stresses a bone that is deficient in mineral or elastic resistance

Stress Fractures

- Fatigue fractures
 - Usually Transvers
 - 2nd metatarsal
 - Tibia
 - Fibula

- Insufficiency fractures
 - In osteopenia, osteomalacia
 - Neck of femur
 - Ribs
 - Neck of humerus
 - Scapula

Pathological fractures

- Fractures caused by trivial force on abnormally weak bone. Seen in:
- Local bone disease
 - Osteomyelitis
 - Benign tumors and Bone cysts
 - Malignant tumors and matastasis
- Generalized disease
 - Metabolic: osteoporosis, rikets
 - Congenital: osteogenesis imperfed
 - Others: Paget's disease

Pathological fractures

 Fractures caused by trivial force on abnormally weak bone. Seen in:

- Local bone disease
 - Osteomyelitis
 - Benign tumors and Bone cysts
 - Malignant tumors and matastasis
- Generalized disease
 - Metabolic: osteoporosis, rickets
 - Congenital: osteogenesis imperfecta
 - Others: Paget's disease

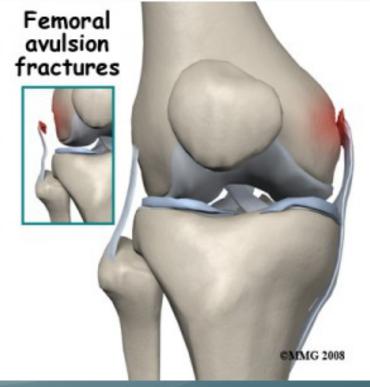
Force & Fractures

- Normal bone:
 - Strong force: ordinary fracture
 - Repetitive stress: Stress (fatigue) fracture
- Weak bone (Pathological fracture)
 - Weak (trivial) force: pathological fracture
 - Normal daily activity: Insufficiency fracture

Quality of Bone	Type of Force	Type of Fracture
Normal	Strong	Normal
Normal	Repetitive loading	Stress - fatigue
Abnormal - weak	Normal daily activities	Stress - insufficiency
Abnormal - weak	Trivial injury	Pathological

Avulsion fractures

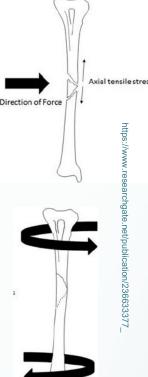

 Part of bone separated by forceful sudden resisted muscle action


Caused by ligament or tendon pull on bone

Part of bone avulsed – bone weaker than

tendon/ligament

Direct


- Mild force: transverse / Severe force: comminution
- Soft tissue more injured

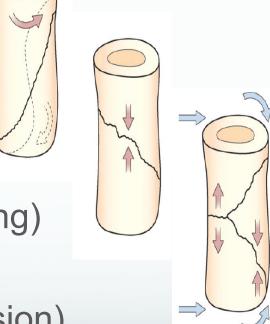
Indirect

- Pattern of fracture depends on force direction
- Less soft tissue injury

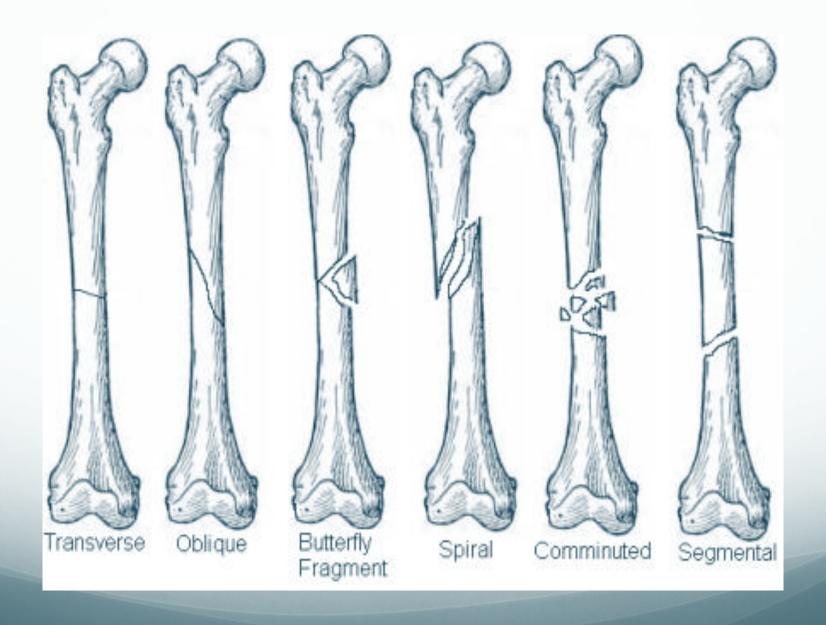
Penetrating

- Missiles
 - Low velocity < 300 m/s damage along the tract
 - Comminution
 - High velocity: >300m/s sever comminution
 - Comminution with wide soft tissue damage

Force & fracture pattern


Fracture pattern suggests mechanism of force

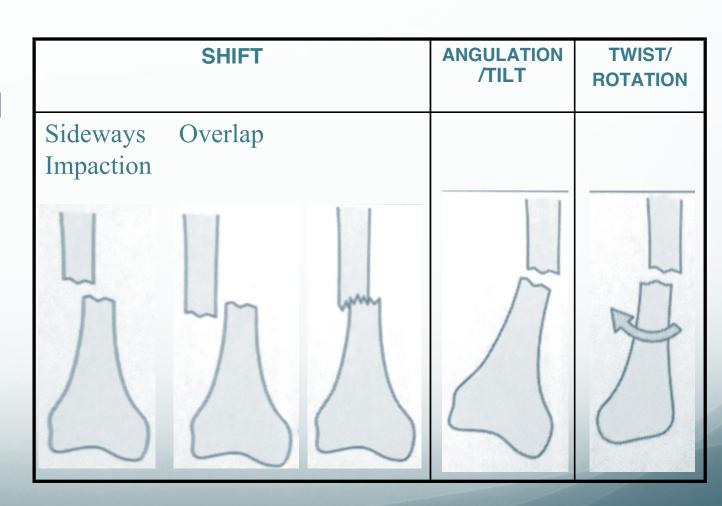
Spiral: (twisting)


Short oblique: (compression)

Transverse: (angulation) (avulsion)

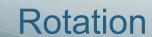
Force & fracture pattern

Coffee Break



- Described as: Position of distal in relation to proximal
 - Un-displaced
 - Displaced

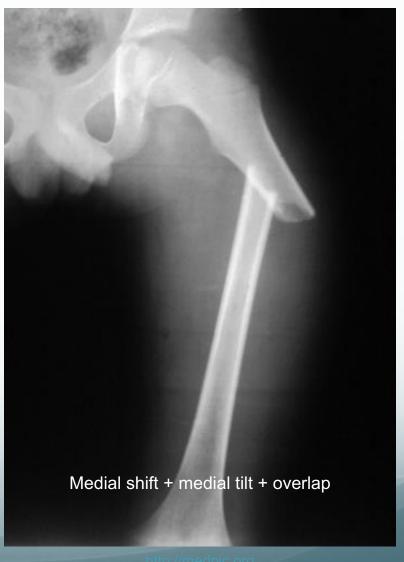
Described as: Position of distal in relation to proximal


- Un-displaced
- Shift
 - Sideways
 - Shortening
 - Distraction
- Angulation
 - In all planes

Rotation

Described as: Position of distal in relation to proximal

- Un-displaced
- Shift
 - Medial / Lateral
 - Anterior / Posterior
 - Shortening (overlap)
 - Distraction
- Angulation
 - In all planes



Described as: Position of distal in relation to proximal

- **Un-displaced**
- Shift
 - Medial / Lateral
 - Anterior / Posterior
 - Shortening (overlap)
 - Distraction
- Angulation
 - In all planes
- Rotation

Fracture Diagnosis

- History
- Clinical features
- Imaging: Radiology (x-Ray)

Trauma History

- Mechanism of injury
 - Date, time, type, method of impact, ...
- Consciousness
- Function of injured part
- Open wound / bleeding
- Other injuries
- Anti-Tetanus status (if skin breached)

Approach - history

- Details of injury
 - Mechanism, force, bleeding, consciousness, ...
- Details of facture
 - Deformity, pain, loss of function, ...
- Other medical problems
- Anti-tetanus status if open injuries
- Careful:
 - Fractures are not always at the site of impact
 - Some fractures do not need severe force

Shall be discussed separately

Clinical Features

- History of Trauma
- Symptoms and signs:
 - 1. Pain
 - 2. Swelling
 - 3. Deformity
 - 4. Loss of function
 - 5. Localised bony tenderness
 - 6. Loss of motion
 - 7. Abnormal movement
 - 8. Crepitus

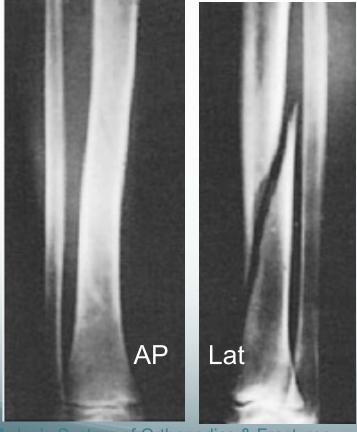
- General medical condition
 - Should be evaluated to exclude
 - Shock
 - Brain injury
 - Other problems
- Vital signs
 - Should be observed and followed up

- Look:
 - Adequate exposure
 - General on patient
 - Local:
 - Swelling, deformity, bruises, color, ...
 - Special attention is to be paid to wounds

Feel:

- Localized bone Tenderness
- Pulse distal to injury capillary refill
- Sensory and motor deficits
- Compartment syndrome
- Temperature and crepitus on movement

Move:

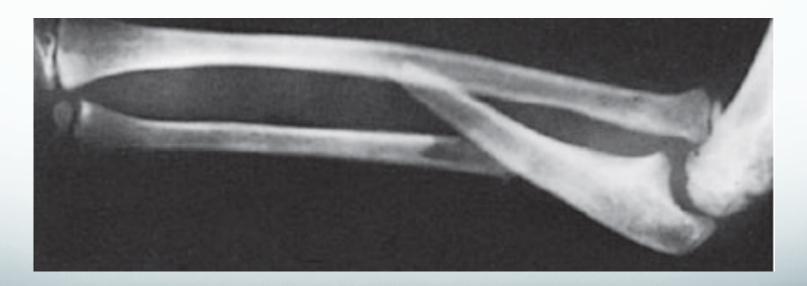

- With care
 - make sure not to cause more pain or injury
- Crepitus & abnormal movement indicates a fracture
- Joints distal to the affected area

- Examination of the viscera
 - Liver and spleen in rib fractures
 - Urinary bladder and urethra in pelvic fractures
 - Neurological examination in head and spinal injury

Investigations - Imaging

- X-rays:
 - Low of 2s
 - Two views: AP and Lateral special views
 - Two joints: Above and Below
 - Two sides: Right and Left
 - Two occasions
 - Two injuries
 - Two Doctors!
 - Special views:
 - Obliques, Tunnel view, skyline, stress views,
 - functional flexion/extension, traction films
 - Arthrography:
 - Shows intra-articular structures
 - Functional in hip

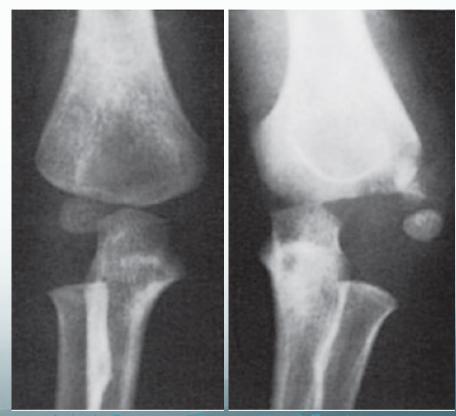
- Plain x-ray: (law of twos)
 - Two views: AP and Lateral



- Plain x-ray: (law of twos)
 - Two views: AP and Lateral

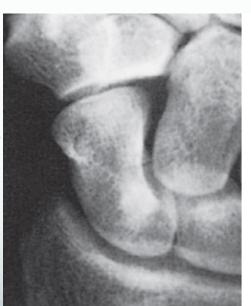
- Plain x-ray: (law of twos)
 - Two views: AP and Lateral
 - Two joints: joint above and joint below
 - To show other injuries

- Plain x-ray: (law of twos)
 - Two views: AP and Lateral
 - Two joints: joint above and joint below
 - To show other injuries
 - To assess rotation


Hip AP view

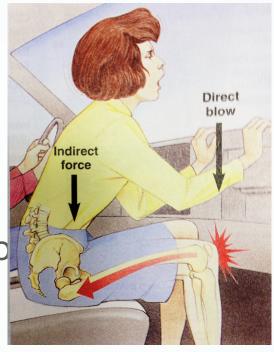
(in the same x-ray)

Knee lateral view



- Plain x-ray: (law of twos)
 - Two views: AP and Lateral
 - Two joints: joint above and joint below
 - Two limbs: for comparison
 - more in children to compare epiphysis

Apley's System of Orthopedics & Fractures


- Plain x-ray: (law of twos)
 - Two views: AP and Lateral
 - Two joints: joint above and joint below
 - Two limbs: for comparison
 - Two occasions
 - e.g. stress fractures
 - e.g. scaphoid fracture

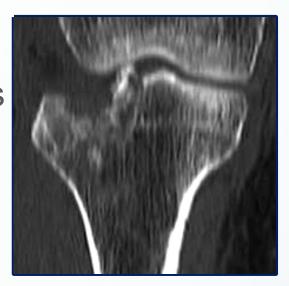
Apley's System of Orthopedics & Fractures

- Plain x-ray: (law of twos)
 - Two views: AP and Lateral
 - Two joints: joint above and joint belo
 - Two limbs: for comparison
 - Two occasions
 - Two injuries
 - e.g. patellar fracture and hip injury
 - e.g. calcaneal fractures & spine injuries

- Plain x-ray: (law of twos)
 - Two views: AP and Lateral
 - Two joints: joint above and joint below
 - Two limbs: for comparison
 - Two occasions
 - Two injuries
 -and two Doctors!!

www.123rf.com/

- Plain x-ray: (law of twos)
- Special views:
 - Ankle mortis
 - Calcaneal view
 - Scaphoid views
 - Shoulder dislocation: axial view
 - Acetabular fractures: 45° tilt views
 - Stress views
 - Traction views
 - Functional flexion/extension (spine)



https://radiopaedia.org

CT Scan:

- In complex and ntra-articular fractures
- In spine
- In pelvic and acetabular fractures
- In calcaneal fractures

ww.learningradiology.com

Summary

- What is a Fracture the soft tissue part
- Fracture types classification
- Relation between fracture and force
- Principles of imaging Law of "Two"s